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We study the effect of clustering on the organization of cooperation by analyzing the evolutionary dynamics
of the “Prisoner’s Dilemma” on scale-free networks with a tunable value of clustering. We find, on the one
hand, that a high value of the clustering coefficient produces an overall enhancement of cooperation in the
network, even for a very high temptation to defect. On the other hand, high clustering homogenizes the process
of invasion of degree classes by defectors, decreasing the chances of survival of low densities of cooperators
in the network.
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I. INTRODUCTION

Cooperative phenomena are essential in natural and hu-
man systems and have been the subject of intense research
for decades �1–6�. Evolutionary game theory is concerned
with systems of replicating agents which interact by choos-
ing their strategies among a set of possible strategies. The
interactions ultimately yield a feedback loop that drives the
evolution of the strategies’ composition of the population
�6–8�. To understand the observed survival of cooperation
among unrelated individuals in populations when selfish ac-
tions provide a short-term higher benefit, a lot of attention
has been paid to the analysis of evolutionary dynamics of the
“Prisoner’s Dilemma” �PD� game. In this simple two-player
game, individuals adopt one of the two available strategies,
cooperation �C� or defection �D�; both receive R under mu-
tual cooperation and P under mutual defection, while a co-
operator receives S when confronted to a defector, which in
turn receives T, where T�R� P�S. Under these conditions
in a one-shot game it is better to defect, regardless of the
opponent strategy, and the proportion of cooperators asymp-
totically vanishes in a well-mixed population. On the other
hand, the structure of interactions among individuals in real
societies are seen to be described by complex networks of
contacts rather than by a set of agents connected all-to-all
�9,10�. Therefore, it is necessary to abandon the panmixia
hypothesis to study how cooperative behavior appear in the
social context.

Several studies �11–19� have reported the asymptotic sur-
vival of cooperation on different kinds of networks. Notably,
cooperation even dominates over defection in nonhomoge-
neous, scale-free �SF� networks, i.e., in graphs where the
number k of neighbors of an individual �the node degree� is
distributed as a power law �12,15�, P�k��k−�, with 2��
�3. Networks with such a distribution are ubiquitous: scale-
free topologies appear as the backbone of many social, bio-
logical, and technological complex systems. However, in the
context of social systems, other topological features, such as
the presence of degree-degree correlations and of high clus-
tering coefficients, are relevant ingredients to take into ac-

count in a complete description of the networks. The studies
of the PD game on SF networks have considered so far net-
works with no degree correlations and a nearly zero cluster-
ing coefficient, with the remarkable exception of Ref. �20�,
where high clustering SF networks are studied. Therefore, it
is necessary to explore the effects that structural properties
such as clustering and degree-degree correlations have on the
survival of cooperation in complex networks.

In this paper, we focus on the effects of a nonvanishing
clustering coefficient on the dynamics of the PD game on SF
networks. The clustering coefficient of a network is related to
the number of triangles present in the network, and is defined
as the probability that two neighbors of a given node share
also a connection between them �9,10�. A high clustering
coefficient points out the presence of local neighborhoods,
i.e., small clusters of densely interconnected nodes, in the
network. This property is present in most social networks
where two friends of an individual are also friends with high
probability. Therefore a full description of cooperative phe-
nomena in social networks should be tackled by considering
highly clustered scale-free networks.

II. NETWORK MODEL

We study a class of SF networks with a tunable clustering
coefficient introduced by Holme and Kim �HK� in Ref. �21�.
The networks are constructed via a growing process that
starts from an initial core of m0 unconnected nodes. At each
time step, a new node i �i=m0+1 , . . . ,N� is added to the
network and links to m �with m�m0� of the previously ex-
istent nodes. The first link follows a preferential attachment
rule �PA�, i.e., the probability that node i attaches to a node j
of the network �with j� i� is proportional to the degree kj of
the node j. The remaining m−1 links are attached in two
different ways: �i� with probability p the new node i is con-
nected to a randomly chosen neighbor of node j and �ii� with
probability �1− p� the PA rule is used again, and node i is
connected to another one of the previously existent nodes.
With such a procedure one obtains SF networks with degree
distribution P�k��k−3, and a tunable clustering coefficient
depending on the value of p. In particular, for p=0 we re-
cover the Barabási-Albert model �22�, where the clustering
coefficient tends to zero as the network size N goes to infin-*gardenes@gmail.com
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ity. For values of p�0 the clustering coefficient monoto-
nously grows with p �21�.

We have first checked that the networks produced by the
HK model have no degree-degree correlations, and we have
analyzed the dependence of the node clustering coefficient
on the node degree. The clustering coefficient of a node i,
Ci

cl, expresses how likely ajm=1 for two neighbors j and m of
node i, where A= �aij� is the adjacency matrix of the graph.
The value of Ci

cl is obtained by counting the actual number
of edges, denoted by ei, in Gi, the subgraph induced by the
neighbors of i, and dividing this number by ki�ki−1� /2, the
maximum possible number of edges in Gi �9,10�:

Ci
cl =

2ei

ki�ki − 1�
=

� j,m
aijajmami

ki�ki − 1�
. �1�

The mean clustering coefficient of the graph Ccl is then given
by the average of Ci

cl over all the nodes in the network. By
definition, 0�Ci

cl�1 and 0�Ccl�1. In Fig. 1 we report the
results obtained for networks with m=m0=3 and N=5
�103. We have considered different values of p correspond-
ing to networks with mean clustering coefficient Ccl

=0 , 0.1, 0.2, 0.33, 0.46, and 0.65. Ensembles of 2�104

networks have been generated for each value of p. In Fig.
1�a� we plot, as a function of k, the average degree KNN�k� of
the neighbors of nodes with degree k. The figure shows a
nearly constant function KNN�k�, pointing out that the HK
model produces SF networks with no degree-degree correla-
tions. This result is further confirmed by computing the as-
sortative index r, introduced in Ref. �23�, as a function of the
network Ccl. As observed from Fig. 1�b� the values of r are
close to 0 for all values of the Ccl, thus confirming the ab-

sence of degree-degree correlations in all the studied net-
works. On the other hand, Fig. 1�c� reveals that the average
clustering coefficient Ccl�k� of nodes with degree k strongly
depends on k. In particular, we observe a power law decay
for high values of the mean clustering coefficient of the net-
work. In conclusion, all the networks considered in this work
have the same degree distribution and no degree-degree cor-
relations. This allows us to make a correct estimate of the
role of the clustering coefficient on the promotion of coop-
eration in SF networks.

III. EVOLUTIONARY DYNAMICS

We now assume that each node of the graph represents a
player. A link between two nodes of the graph indicates that
the two players interact and can play. We implement the
finite population analog of replicator dynamics �12,15� for
the PD game with payoffs R=1, P=S=0, and T=b�1. At
each generation of the discrete evolutionary time t, each
agent i plays once with every agent in its neighborhood and
accumulates the obtained payoffs Pi. Then all the players
update synchronously their strategies by the following rules.
Each individual i chooses at random a neighbor j and com-
pares its payoff Pi with Pj. If Pi� Pj, player i keeps the same
strategy for the next generation. On the other hand, if Pj
� Pi, the player i adopts the strategy of its neighbor j with
probability �i→j =��Pj − Pi� for the next game round robin.
Here, � is related to the characteristic inverse time scale: the
larger �, the faster evolution takes place. We assume �
= �max�ki ,kj�b�−1. This choice assures that �i→j �1 and also
slows down the invasion process from or to highly connected
nodes �12�.

After a transient time, the evolutionary dynamics reaches
a stationary regime which can be characterized by the aver-
age cooperation index 	c
, defined as the overall fraction of
time spent by all the players in the cooperator state. The
value of 	c
 is computed as follows. After a transient time
	0=5�103, we further evolve the system over time windows
of 	=103 generations each, and we study the time evolution
of the number of cooperators c�t�. In each time window we
compute the average value and the fluctuations of c�t�. When
the fluctuations are less than or equal to 1 /�N, we stop the
simulation and we consider the average cooperation obtained
in the last time window, as the asymptotic average coopera-
tion 	c
 of the realization. In each realization we change both
the network and the initial conditions of the dynamics. All
the results reported below are averages over 103 realizations
for each network �various values of Ccl� and game parameter
�b�.

IV. RESULTS

To unveil the influence that clustering has on the promo-
tion of cooperation in scale-free networks, we explore the
evolutionary dynamics on networks with different values of
the clustering coefficient. In Fig. 2 we report 	c
 as a func-
tion of b for several networks with different Ccl. As expected,
the degree of cooperation 	c
 decreases monotonously as the
temptation to defect b increases. However, the path from an
all-cooperator network, at b=1, to an all-defector network,
for high values of b, depends strongly on the clustering co-
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FIG. 1. �Color online� �a� Average degree of the neighbors of
nodes with degree k, KNN�k�, for four SF networks with a different
values of Ccl. �b� Assortative index r as a function of Ccl. �c� Mean
clustering coefficient of nodes with degree k, Ccl�k�, for four SF
networks with different Ccl.
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efficient of the SF network. From the figure it is clear that SF
networks with the highest clustering coefficient show a re-
markable survival of cooperation with values 	c
�1 up to
temptation values of b=2, in agreement with Ref. �20�. This
is in contrast with the constant decrease of the cooperation as
b increases observed in SF networks with no clustering. The
enhancement of cooperation for clustered SF networks dis-
appears when moving to higher values of b. In particular, a
sharp decrease from high to zero cooperation is observed
when b varies in the narrow range b� �2,2.5�, with SF net-
works with small clustering coefficients showing a slower
convergence to the all-defector state.

Since all the networks analyzed share the same degree
distribution, it is possible to compare the microscopic evolu-
tion of cooperation as a function of b by looking at the prob-
ability Pc�k� that a node of degree k acts as a cooperator in
the stationary regime. Such a probability is calculated by
considering the final time configurations for each value of b
and p. Namely, for a given realization l �of the network and
of the initial conditions�, we count the final number cl�k� of
cooperators of degree k, and the number of nodes nl�k� of
degree k. Then, Pc�k� is computed as Pc�k�=�lcl�k� /�lnl�k�.

In Fig. 3 we report Pc�k� for different values of the temp-
tation b and for two SF networks corresponding to the lowest
and highest values of Ccl. As b increases, and hence the
average cooperation 	c
 decreases, the curves Pc�k� show a
similar behavior in the two networks considered. In particu-
lar, high degree nodes are more resistant to defection and
display the highest values of Pc�k�, for each value of b. In
addition to this, the profile of Pc�k� shows, for all the curves,
a well-defined minimum for intermediate degree classes.
Therefore, lowest-degree nodes are not the easiest ones to be
invaded by defectors. This result has been previously re-
ported for BA networks in Ref. �24�. In BA networks the
existence of the minimum is explained by the presence of
low degree nodes �the last nodes to be attached in the net-
work growth process� that are only connected to the hubs.
These leaves are thus screened by hubs from the rest of the
network and therefore imitate and fixate the cooperative
strategy adopted by their corresponding neighboring hubs.
The same picture applies for highly clustered networks but

with an important difference regarding the organization of
leaves around hubs. In this case, the last nodes attached to
the network are usually connected both with a hub and with
other low degree nodes �also attached to the hub�. These
nodes are again dynamically isolated from the rest of the
network by the hub and thus they imitate and then fixate the
hub’s strategy. Additionally, the links between two leaves
connected to the same hub �closing the triad composed of the
hub and the two leaves� nourish such leaves with a new
mechanism to resist defection. In fact, the payoff of a leaf is
now provided both from the hub and the other leaf. There-
fore, any eventual change of the state of the hubs is not
trivially followed by a change of leaves’ state since they can
still obtain payoff from the interactions that share among
them. In other words, the density of triangles around hubs in
highly clustered SF networks enhances the fixation of coop-
eration in low degree nodes.

Let us now focus on the path toward 	c
=0 as b increases.
Although the overall picture revealed from Fig. 3 seems to
be qualitatively the same regardless the Ccl of the networks,
a careful inspection of the results reveals that a high Ccl tends
to homogenize the role of degree classes when defectors in-
vade the network. In Fig. 4 we report the curves Pc�k� of
several networks of different Ccl and at different temptation
values b so that the average level of cooperation 	c
 is the
same in all the networks. Namely, Figs. 4�a� and 4�b� corre-
spond to 	c
�0.35 and 0.05, respectively. For low clustering
networks the shape of Pc�k� can be naively described by
defining a quantity k��b�, so that for k�k��b� we have
Pc�k��1, while Pc�k�
1 for k�k��b�. This description has
been already introduced in Ref. �24� for BA networks. Ob-
viously, the value k��b� grows with b �see Fig. 3�a�� and
hence the conversion of cooperator into defector strategies
can be explained as a progressive invasion of the degree
classes by defectors: the larger the value of b the more de-
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gree hierarchies defectors have invaded. This evolution
points out a smooth transition toward 	c
=0 for SF networks
with low Ccl values, as reported in Fig. 2. Conversely, for
highly clustered SF networks there is not such critical thresh-
old k��b� and the invasion by defectors affects homoge-
neously the degree classes. This is clear from Figs. 4�a� and
4�b� by looking at the curves Pc�k� corresponding to SF net-
works with Ccl=0.65. In these two curves, corresponding to

	c
=0.35 and 0.05, all the degree classes have been already
affected by the invasion of defectors. Therefore, one cannot
describe the path toward 	c
=0 in highly clustered SF net-
works as a hierarchical invasion of defectors as in the BA
case �24�. On the contrary, the degree hierarchy seems not to
play a crucial role as soon as defectors invade highly clus-
tered networks. This result would explain the sudden drop of
cooperation reported in Fig. 2 for high values of Ccl as a
consequence of the low ability of clustered networks to bias
defector strategies toward low and intermediate degree
classes.

V. CONCLUSIONS

We have studied the role of clustering, a typical property
of social systems, in the evolution of cooperation in SF net-
works. Our conclusion is twofold. On the one hand, a sig-
nificant enhancement of cooperation is shown when the clus-
tering coefficient of the network is high. This enhancement is
manifested by the persistence of a population of �nearly� all
cooperators in the network even for large values of the temp-
tation to defect. On the other hand, the transition to the zero
level of cooperation becomes sharper as the clustering of the
network increases. The sudden drop of the cooperation in
highly clustered populations is explained as a consequence
of the spreading of defector strategies across all the degree
classes. Therefore, the picture of a hierarchical invasion of
defectors previously observed in BA networks does not ap-
ply for highly clustered SF networks.
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